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Feynman'’s proof of the Maxwell equations

Freeman J. Dyson

Institute for Advanced Study, Princeton, New Jersey 08540

(Received 3 April 1989; accepted for publication 19 April 1989)

Feynman’s proof of the Maxwell equations, discovered in 1948 but never published, is here put on
record, together with some editorial comments to put the proof into its historical context.

I. THE PROOF

As I mentioned in.my talk at the Feynman Memorial
Session of the AAAS meeting in San Francisco,' Feynman
showed me in October 1948 a proof of the Maxwell equa-
tions, assuming only Newton’s law of motion and the com-
mutation relation between position and velocity for a single
nonrelativistic particle. In response to many enquiries, I
here publish the proof in a form as close as I can come to
Feynman’s 1948 exposition. Unfortunately, I preserved
neither Feynman’s manuscript nor my original notes.
What follows is a version reconstructed at some unknown
time from notes which I discarded.

Assume a particle exists with position x; (f = 1,2,3) and
velocity x; satisfying Newton’s equation

mi; = F;(x,x,t), (1)
with commutation relations

(xx] =0, 2)

m[x;% | = ifi . 3)

Then there exist fields E(x,t) and H(x,t) satisfying the
Lorentz force equation

F,=E; + €%, H, 4)
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and the Maxwell equations

diV H= O, (5)
JH
= 1E=0. 6
E» + cur (6)
Remark: The other two Maxwell equations,

div E = 4mp, @)
oE .
—= —curl H = 44#j,

Frale 7j (8)

merely define the external charge and current densities p
and j.
Proof: Equations (1) and (3) imply

[x,F,] +m[x;,x,] =0. (9)
The Jacobi identity

[/ L% ] ]+ [ [ 1T + [ [x0% 1] =0

(10)

with (3) and (9) implies

[x:[x;,Fc]] =0. (1)
Equation (9) also implies

[x,F] = — [x:F5]s (12)
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and therefore we may write
[x;,F] = — (ih/m)e, H,. (13)

Equation (13) is the definition of the field H, which would

in general depend on x, x, and ¢. But Eq. (11) says
[x,H,]=0,

which means that H is a function of x and ¢ only.

Next we satisfy (4) by assuming it to be the definition of
the field £. Again, £ will in general depend on x, x, and ¢,
but Egs. (3), (13), and (14) imply

(14)

[x..E;] =0, (15)
which says that E is a function of x and ¢ only.

The definition (13) of H may be written

H] = — (imz/zﬁ)fjk, [xj,xk] (16)

by virtue of (9). Another application of the Jacobi identity
gives

jkl[xl,["xk]]zo 1n
Equations (16) and (17) imply
[xlyH[] = 0 (18)

which is equivalent to (5). It remains to prove the second
Maxwell equation (6).
Take the total derivative of Eq. (16) with respect to
time. This gives
oH, _ OH, | im? .o
o + X ax. =T € [ %% ]-
Now by (1) and (4), the right side of (19) becomes

— (im/f)€) [E; + €mnXH, % ]|

(19)

= — (lm/ﬁ)( jkl[E‘j,xk] + [ka,,xk] —_ [X,Hk,fck])
OE; c?HI . dH,
= €y — X
dx,, 6xk ox,,
+ (im/f)H, [ x,,X, ]. (20)

On the right side of Eq. (20), the last term is zero by sym-
metry because of (16), the third term is zero because of
(5), and the second term is equal to the second term on the
left of (19). The remaining terms in Egs. (19) and (20)
give

8H ; JE;

it _4 21
at e, axk b

which is equivalent to (6). End of proof.

I1. EDITORIAL COMMENT

When I show this proof to young physicists educated in
the 1980s, their response is usually disparaging. They say
the result is trivial and the proof unnecessarily complicat-
ed. It is therefore incumbent on me to explain why the
result is not trivial and why Feynman chose to prove it the
hard way. To understand the motivation for the proof, it is
essential to put it into a historical context. The young phy-
sicists of today are as far removed from the Feynman of
1948 as Feynman was then removed from Planck and Ein-
stein.

The argument of the young physicists is simple.” We
know, they say, the commutation relation between position
and momentum:

[x;p: ] = i 6y (22)
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If we define a vector potential 4, by

P =mx, + A, (23)
then the two commutation relations (3) and (22) together
give

[x,4,]=0. (24)
Therefore, the vector potential A, is independent of veloc-
ity, and depends only on x and ¢.

We also know, they say, that the momentum and veloc-
ity of a particle are related by the equations of Lagrange:

oL
= , 25
Dr %, (25)

- aL
= , 26
Pk ax, (26)

where

L = L(x,x,t) 27)

is the Lagrangian. If we integrate (25) using (23), the re-
sult is

(28)

where @ is also independent of velocity. The scalar poten-
tial @ is defined by (28). If we now differentiate (23) using
(26) and (28), the result is Newton’s equation (1) with the
Lorentz force (4), the fields E and H being defined by the
standard expressions

L = ymi i, + 5uds + @,

H = curl 4, E=grad¢7—-‘;—f:.

(29)
The Maxwell equations (5) and (6) follow trivially from
(29). End of proof. So, the young physicists say, what is the
big deal? From a modern point of view, the assumption of
Feynman’s commutation rule (3) implies immediately the
existence of a vector potential, and as soon as you have a
vector potential you also have a Maxwell field.

Feynman’s point of view was quite different. In 1948 he
was still doubting all the accepted dogmas of quantum me-
chanics. He was exploring possible alternatives to the stan-
dard theory. His motivation was to discover a new theory,
not to reinvent the old one. He was well aware that, if he
assumed the existence of a momentum p, satisfying the
commutation rule (22) in addition to (3), he would only
recover the standard formalism of electrodynamics. That
was not his purpose. His purpose was to explore as widely
as possible the universe of particle dynamics. He wanted to
make as few assumptions as he could. In particular, he
wanted to avoid assuming the existence of momentum and
Lagrangian related by (25) and (26). He chose his starting
assumptions (1), (2), and (3) because they appeared to be
less restrictive than the standard assumptions (22), (25),
and (26). He hoped that by going along this road he might
be led to new physics. He hoped to find physical models
that would not be describable in terms of ordinary Lagran-
gians and Hamiltonians.

Feynman in 1948 was not alone in trying to build theo-
ries outside the framework of conventional physics. At that
time many of the greatest physicists, including Yukawa,’
Born,* and Heisenberg,> were pursuing programs for the
radical reform of physics. All these radical programs, in-
cluding Feynman’s, failed. But Feynman was the only one
who thoroughly tested his program before rushing into
print. His proof of the Maxwell equations was a demonstra-
tion that his program had failed. The proof showed him
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that his assumptions (1), (2), and (3) were not leading to
new physics. The road that he had been exploring was a
dead end. From Feynman’s point of view, the proof was a
failure, not a success. That is why he was not interested in
publishing it.

I venture to disagree with Feynman now, as I often did
while he was alive. I still believe that his proof is worth
publishing. It is not only a historical relic of a failed pro-
gram. It also raises some new questions. The Maxwell
equations are relativistically invariant, while the Newtoni-
an assumptions (1), (2), and (3), which Feynman used
for his proof, are nonrelativistic. The proof begins with as-
sumptions invariant under Galilean transformations and
ends with equations invariant under Lorentz transforma-
tions. How could this have happened? After all, it was the
incompatibility between Galilean mechanics and Maxwell
electrodynamics that led Einstein to special relativity in
1905. Yet here we find Galilean mechanics and Maxwell

equations coexisting peacefully. Perhaps it was lucky that
Einstein had not seen Feynman’s proof when he started to
think about relativity.
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Nitrogen temperature superconducting ring experiment

Fuhan Liu,® Rochelle R. Tucker, and Peter Heller
Department of Physics, Brandeis University, Waltham, Massachusetts 02254

(Received 27 December 1988; accepted for publication 4 April 1989)

A student experiment is described for studying persistent currents in a commercially obtained
ring of the “123” superconducting material at liquid-nitrogen temperature. The currents are
easily detected with a standard analog Hall probe. From observations extended over a 3-week
period, an upper limit on the possible resistance of one such ring was set at about 2 10~ ' Q2. For
the rings studied, the induced current saturated at about 2 A as the applied flux change was
increased. An ac technique for checking the continuity of the superconducting path around the
ring is also described. These experiments provide an interesting supplement for topics in first-year
electricity and magnetism. The effects are striking and easily discussed at an introductory level.
For example, the current induced by turning the ring over in the Earth’s field is readily seen.

L. INTRODUCTION

The superconducting ring experiment of H. Kamerlingh
Onnes' is a landmark in the physics of the last 100 years.
With the discovery®* of the new high-T, superconductors,
the experiment is easily adapted for classroom use. The
““persistent current” effect is certainly the most sensitive
indicator of the perfect conductivity—a fact which can be
well appreciated by first-year students. It is a useful supple-
ment to basic treatments of electromagnetism as it empha-
sizes fundamental principles such as Faraday induction
and Lenz’ law, conductivity, inductance, and the Biot-Sa-
vart law. At the same time, it is exciting, as it deals with
materials and to an extent with issues currently under
study around the world.

The ring experiment has the advantage of rot requiring
an extensive background in superconductivity, although
for those who wish to learn more, many general references
are available such as the books by Schoenberg® and Tink-
ham.” The technical literature dealing with the new materi-
als has also been reviewed recently.®
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Our philosophy has been to provide an approach that is
as simple and generally doable as possible. The “ring”
(with its drilled hole) was provided to us commercially’
out of the “123” ceramic (Y,Ba,Cu;0,_;). The ring di-
mensions’ (0.82-in. outer diameter, 0.26-in. hole diame-
ter) were dictated by the practical requirement that it be
possible to drill the hole without cracking the outside.
Hence, the radial ring width was about equal to the hole
diameter. In most of our experiments, the “ring current”
was detected through the magnetic field it produced at a
point 7.7 mm below the ring center. Since the form of the
current distribution over the ring was not known, the ratio
of the measured field to the total ring current could not be
calculated very accurately, although it could be estimated
rather well. The technique should then be described as “se-
miquantitative.”

Section II describes qualitative observations of the ring
current. These experiments are striking, easily followed at
an introductory level, and can be done either as lecture
demonstrations or by small student groups in the laborato-
ry. This provides an exciting accompaniment to standard
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NOTES AND DISCUSSIONS

Comment on “Feynman’s proof of the Maxwell equations,” by F. J. Dyson

[Am. J. Phys. 58, 209-211 (1990)]

Norman Dombey

Physics Division, University of Sussex, Brighton BN1, 9QH, England
(Received 29 June 1990; accepted for publication 27 July 1990)

Dyson' shows that Feynman was able to derive equa-
tions for the electromagnetic field and the Lorentz force
from Newton’s second law of motion using only the com-
mutation relation between position and velocity. These
equations for the electromagnetic field are claimed to be
equivalent to Maxwell’s equations, which are of course
Lorentz invariant, even though Newton’s law is Galilean
invariant. How can this be?

In fact, Dyson only proves the two source-free Maxwell
equations,

divH=0, (D

curl E= —i}—l. (2)

ot

The remaining two Maxwell equations are claimed to be
definitions of charge density p and current density j. This
provides the clue to the paradox. Can there be another de-
finition of p and j which allows the theory to be Galilean
invariant?

Le Bellac and Levy-Leblond? studied some time ago Ga-
lilean-invariant theories of electromagnetism. (Maxwell’s
equations are, of course, not Galilean invariant. ) Le Bellac
and Levy-Leblond show that a Galilean invariant theory of
electromagnetism requires that one of the following two
hypotheses must be dropped: '

(i) the continuity equation div j = — %—#0 y

(ii) magnetic forces between electric currents.

Soin order to keep Galilean invariance, we can still define p
by

divE =4mp (3)
as usual, but we should take as the new definition of j
curl H = 4r7j 4)

with no displacement current. This is the version of Gali-
lean electromagnetism called the magnetic limit in Ref. 2.
In particular, only stationary currents satisfying

divij=0 (5)
are allowed in this version of Galilean-invariant electro-
magnetism.

It is not very well known that Levy-Leblond studied Ga-
lilean-invariant quantum theories of arbitrary spin.®> He
was able to show that a Galilean-invariant theory of a
charged spin-1/2 particle has a gyromagnetic ratio g = 2.
Therefore, the spin and magnetic moment of an electron
are not consequences of either relativity or the Dirac equa-
tion, contrary to what is claimed in most textbooks.
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Comment on “Feynman’s proof of the Maxwell equations,” by F. Dyson

[Am. J. Phys. 58, 209-211 (1990)]
Robert W. Brehme

Department of Physics, Wake Forest University, Winston-Salem, North Carolina 27109
(Received 5 April 1990; accepted for publication 30 June 1990)

Freeman Dyson’s statement in his recent interesting and
noteworthy paper’ that the source equations of Maxwell

VE=p/¢ (1a)
and
JE '
VXB — = ud, 1b
ot ,u (16)
85 Am. J. Phys. 59 (1), January 1991

“merely define the external change and current densities, p
and J,” I think diminishes the importance of these equa-
tions in establishing the dynamical character of the electro-
magnetic field.

To justify this opinion, permit me a brief summary of the
foundations of classical electromagnetic theory: The rela-
tivistic Lagrangian density . from which Maxwell’s
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equations and the ponderomotive equations of motion are
derived is

L =Au,u’ +pu,A°+«F,_F. 2)

Here, u,, is the proper velocity of the matter whose invar-
iant mass and charge densities are A and p, 47 is the vector

potential of the electromagnetic field, x = — 1/4u, and
F__ is the field itself:
dA dA
F or = —— = (3)
ax° ax™

The relationships connecting F,, with the more familiar E
and B are
E, =cF, and B, =€, F* (4)

The wvariation of the action S, where S
= [.Z dx dy dz c dt, relative to the world line of charged,
massive matter produces the ponderomotive equation,
d>x*
ar

where F“* is given by Eq. (3). The first set of Maxwell’s
equations, which Dyson addressed,

A = pF*u,, (5)

VB =0, (6a)
and
vxE+ 2B, (6b)
at

are an identity satisfied by certain space-time derivatives of
F*#¥ in virtue of the definition of Eq. (3), namely,
JF JF, JF,
uv vo on
+ + =0.

ox’ ax* ax”
The variation of the action S relative to the vector field
A" and its space-time gradients yields the second set of

(6¢)

Maxwell’s equations, the source equations, Egs. (1), in
which p = pu®/c.

The choice of the Lagrangian density of Eq. (2) is not by
mere whim. Rather, the choice reflects an attempt to en-
dow as much dynamical character to the field as common
sense allows, all the time maintaining simplicity and, of
course, relativistic covariance. The first term, Au,u°, en-
dows matter with inertia and is responsible for the familiar
product of mass and acceleration. The second term,
pu,A?, couples the field and matter in the simplest possible
relativistically invariant fashion. With respect to matter, it
yields the force of interaction between particle and field
appearing in the ponderomotive equation, Eq. (5). Just as
importantly, it suggests that the vector field 4° may be
regarded as a dynamical variable. We place this variable on
par with displacement since it does not arise from the deriv-
ative of a more fundamental field.

But as a description of a Lagrangian density for the field
itself, pu,A4° is incomplete because, if the field is to be en-
dowed with a dynamical character (without which waves
could not be propagated), a term corresponding to the in-
ertial term Au,, 4’ must be introduced. Clearly a derivative
of the vector field, analogous to velocity, should appear as a
scalar in the Lagrangian density to produce such an inertial
effect. The space-time curl of the vector field, Eq. (3), is
chosen in order to maintain gauge invariance. Thus to .
we add the term «F,,, F*".

In this way the left sides of Maxwell’s source equations,
Egs. (1), are analogous to the product of mass and accel-
eration while the right sides may be thought of as a force of
interaction with matter.

'F. Dyson, “Feynman’s proof of the Maxwell equations,” Am. J. Phys.
58, 209-211 (1990).

Comment on “Feynman’s proof of the Maxwell equations,”
by Freeman J. Dyson [Am. J. Phys. 58, 209-211 (1990)]

James L. Anderson®

Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de México, A. Postal 70-543, Mexico

04510 D. F., Mexico

(Received 11 July 1990; accepted for publication 3 August 1990)

In his reconstruction of Feynman’s derivation of the
Maxwell equations starting with Newton’s equations of
motion for a particle in operator form and assumed com-
mutation relations between the position and velocity of the
particle, Dyson remarks that the two Maxwell equations

divE =4mp, (n
3,E — curl H = 47y, (2)
which are not obtained from the Feynman derivation
“merely define the external charge and current densities p
and j.” Far from being a mere definition we would argue

that (1) is the heart of the Maxwell equations since it is
equivalent to Coulomb’s law. One could equally well have
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taken, as definitions of p and j

div(E/J1 —E?) =4mp (3)
and
A (E/N1—E?) —curl H=4xj, (4)

which would not yield Coulomb’s law for a point source.
We conclude that the reconstruction given by Dyson is not
a derivation of Maxwell’s equations.

® Permanent address: Physics Department, Stevens Institute of Technol-
ogy, Hoboken, NJ 07030.
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Comment on “Feynman’s proof of the Maxwell equations,” by Freeman
J. Dyson [Am. J. Phys. 58, 209-211 (1990)]

I. E. Farguhar

Department of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, Scotland
(Received 23 July 1990; accepted for publication 9 August 1990)

Concerning his reconstruction of Feynman’s proof of
the Maxwell equations, Dyson asks how it could have hap-
pened that the proof begins with assumptions invariant un-
der Galilean transformations and ends with equations in-
variant under Lorentz transformations. The answer is that
the proof deals with only two of the four Maxwell equa-
tions.

Starting from the Galilean-invariant assumptions of
Newton’s equation mX; = F;(x,x,t) and of the commuta-
tion relations [x;,x, ] = 0 and m[x;,x, | = i#i §;, Dyson
shows how to introduce a quantity H(x,?) that satisfies the
Maxwell equation,

div H=0. (1)

It is easy to see that the quantity H(x,t), derived solely
from Galilean-invariant equations, is itself Galilean invar-
iant and has a Galilean-invariant divergence. Thus the
Mazxwell equation (1) is Galilean invariant.

Dyson introduces the quantity E(x,t) by way of the Lor-
entz-force equation,

F,=E + ;% H,

and proceeds to show that H(x,t) and E(x,t) satisfy the
Maxwell equation,

%Iti-l-curlE:O. 2)

We note that E, unlike H, is not invariant under Galilean
transformations X; = x, — v;t, T=1¢, but transforms ac-
cording to

E‘j =E; + €0, H,.

Nevertheless, it may readily be shown that the Maxwell
equation (2) is invariant under these transformations.

That the Maxwell Egs. (1) and (2)—which are, of
course, well known to be Lorentz invariant—are also Gali-
lean invariant is to be expected, for the Galilean transfor-
mations are limiting forms of the Lorentz transformations
as ¢c— o« and Eqgs. (1) and (2) do not contain c.

But there are two other Maxwell equations, in Dyson’s
formulation

div E = 4mp 3)
and (with correction of misprints in sign)
~%Et:—+cur1H=4ny‘. (4)

Dyson dismisses these equations from the proof on the
grounds that they merely define the external charge and
current densities p and j. However, it may readily be seen
that under Galilean transformations, for which H, = H,,
E, = E; + €;,v, H,, the left-hand side of each of these
equations is not invariant. If, following Dyson, we regard
these equations as defining p and j, we can, of course, make
(3) and (4) invariant by supposing o and j to transform in
the manner required to yield this invariance. However,
these transformations for p and j then differ radically from
those obtained by letting ¢ — « in the Lorentz transforma-
tions for p and j. Thus Egs. (3) and (4), unlike (1) and
(2), are not both Lorentz invariant and Galilean invariant.

That this is to be expected may be seen on restoring ¢ to
the equations instead of setting ¢ = 1. We then have [in the
system of units that gives (1) and (2)],

(1/¢%) div E = 4mp : (3
and
—iza—E+curlH=4ﬂj. (4')
¢ ot

On letting ¢ — o we obtain equations the left-hand sides of
which are invariant under Galilean transformations; the
resulting Galilean invariance of p and j accords with that
obtained by letting ¢ — o« in the Lorentz transformation of
pandj.

Thus, as Dyson points out, “here we find Galilean me-
chanics and Maxwell equations coexisting peacefully”—
but not all the Maxwell equations simultaneously.

Comment on “Linear regression analysis in a first physics lab,” by
L. Hmurcik ef a/. [Am. J. Phys. 57, 135-138 (1989)]

Jay Orear

Laboratory of Nuclear Studies, Newman Lab, Cornell University, Ithaca, New York 14853
(Received 15 March 1989; accepted for publication 20 October 1989)

The paper by Hmurcik et al.! proposes a method for
teaching some elements of curve fitting and error analysis
in a freshman physics lab. I have five criticisms: (1) Their
Eqgs. (4) and (5) (for errors in intercept and slope) are
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wrong; (2) the authors make no use of the errors of mea-
surement; (3) they train the students to do a least-squares
fit (or linear regression analysis) of y on x when the errors
arein x rather thanin y; (4) they give an incorrect interpre-
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